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Introduction

We introduce a new spatial discretization of the linear Boltzmann transport
equation for 3D Cartesian geometry. This spatial discretization, called the Piecewise
Linear Discontinuous Finite Element method (PWLD), is a standard Galerkin DFEM
method that utilizes Piecewise Linear basis functions, which were first used in 2D by
Stone and Adams|[1,2], and in 3D for a CFEM diffusion discretization[3]. The PWLD
method is designed for accuracy in the thick diffusion limit on arbitrary polyhedral
grids. Previously, only Corner Balance methods have been shown to be successful in
the diffusion limit for these 3D grid types [4,5]. Other methods that may be
extended to 3D for polyhedral grids include DFEMs using Wachspress basis
functions [6,7], the CFEM-based DFEM methods developed by Warsa [8], and
characteristics methods that use PWL source approximations [9]. We will briefly
derive the PWLD method for polyhedral grids and present a variety of numerical
methods to demonstrate its numerical resiliency and correctness. Furthermore, we
note that the PWLD method meets all of Adams’ requirements for acceptable
diffusion limit behavior [10] on polyhedral grids, but will not show numerical
results to this effect. The goal of this paper is to serve as an introduction to the
application of PWLD for 3D transport.

Development

We write the time-independent, monoenergetic Sn transport equation in 3D
Cartesian geometry as

Q. Vy, (%Y, 2)+o(X Y. 2)y, (% Y.2)=Q, (X y,2), (1)

where the m subscript indicates the index of an element in the quadrature set used
for the discrete-ordinates approximation [11].
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The application of a DFEM to this equation is straightforward, and described in
many different references [1,2,6,8,10,12,13]. DFEMs expand all spatially dependent
terms (ywand Q in Eq. (1)) in terms of basis functions, u. For convenience when
working with polyhedral cells, we divide our cells into tetrahedral sub-cell units,
called sides. We define a side by two adjacent vertices, a face center point, and the
cell center point. Because a face can be determined by more than three vertices, the
vertices on a face do not have to be co-planar in general. As a result, we facet our
face about the face center point. A side for a faceted face is shown in Figure 1.

Figure 1: A side in a hexahedral cell with a faceted face

We now define the basis functions as linear combinations of the standard linear
functions on tetrahedral sides:

Uj(r) = tj(r) + Z ﬂf,jtf(r) + ac,jtc(r)’ 2)

faces at j

where the t functions are standard linear functions defined tetrahedron by
tetrahedron. For example, tj equals one at the j-th vertex and decreases linearly to
zero on all other vertices of each side that touches pointj. t.is unity at the cell
midpoint and zero at each face midpoint and each cell vertex. tris unity at the face
midpoint and zero at the cell midpoint and at each of the face’s vertices. The o and
frare weights that give the cell and face midpoints as weighted averages of their
vertices:

i, = cell midpoint ="« F;; (3)
i@c
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r, = face midpoint = Z By it - )

jef

. 1 1 :
In this paper we assume that «_; =— and fS; ; =—, where J is the number of
BN TN,
vertices in the cell, and Nris the number of vertices in a face. As aresult, « is the
same for every basis function in the cell, and g, is the same for every basis function

on a face. We note that this basis function definition meets Adams’ diffusion limit
requirement of full-resolution for DFEMs [10] because we can define a basis
function supported at each node in a general polyhedral cell.

The result of the DFEM discretization is a single-cell matrix that determines the
unknowns in each cell in terms of its source and its incident intensities (from
upstream cells or boundary conditions). The size of the single cell matrix is Jx/
where J is the number of basis functions used to approximate the flux in the cell. A
row of a single-cell matrix is determined by testing the equation with a weight
function. The ith row of the single cell matrix is given by

> > (Quen), i v, Kg&m,f,juj (xy, Z)j—[gwm,juj (%, Z)H ds

f=facesef
i

seceIIV

+> v { -v[gv/m,juj(xyz)ﬂdv 5)
+ 3 [y { xyZZwm, j Xyz}dv Y v ,i: U (%Y, Z)V

secelly, secelly,

where 7 denotes an angular intensity unknown on the boundary of the cell. These
surface quantities are determined by an upwinding condition.

_ Voo 1T T1eC2, >0
=g T (6)
if feQ <0

V/m,upwind cell

The upwinding condition along with the weight and basis function definitions
allows this method to retain the surface matching property requirement for the
diffusion limit [10]. Again, for convenience when working with polyhedral cells, the
integrals in Eq. (5) are divided into sums of integrals over sides. Egs. (5) and (6)
represent a general discontinuous finite element spatial discretization applied to the
3D Cartesian transport equation. We solve the system of equations local to a cell
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generated by multiplying Eq. (5) by J distinct weight functions {v;}, which are the
same set of equations as the basis functions, to produce an approximate solution to
the transport equation in the cell. We have now fully defined our method except for
boundary conditions, which are straightforward. We have also developed a lumped
and lumping parameter version of the method, which we will not describe in detail
in this paper [12].

Numerical Test Problems

We have developed a variety of numerical test problems to further characterize our
method and compare it against existing methods. We implemented our method in
the Parallel Deterministic Transport Code (PDT) being developed at Texas A&M
University. PDT is a massively parallel code that is designed to be a general
methods test bed for deterministic transport. We have also implemented unlumped,
lumped, and lumping parameter versions of the Tri-Linear DFEM (TriLD) [13] in
PDT, and use it as a standard by which to compare the accuracy of PWLD.

The first test problem we will present tests the resiliency of the method on
extremely distorted cells. In this test problem, we have a one cell spatial domain of
4 cm x 4 cm X 4 cm, ranging from the point (0,0,0) to the point (4,4,4). The vertex at
the origin, (0,0,0), is moved incrementally toward the vertex located at (4,4,4). That
is, we begin with a cube and incrementally make it closer to concave, slightly
concave, and ultimately dramatically concave. As we do this, some of the faces
become significantly non-planar. Moreover, some of the “side” subcells take on
negative volumes when the cell center point is outside the cell, which is true for
some of tests.

The next set of test problems are truncation error test problems. We ran a series of
truncation error problems in the thin limit, and compared the results of PWLD and
TriLD. For these truncation error problems we developed a problem with a
quadratic solution using the method of manufactured solutions [12]. These
quadratic solutions have spatial coordinate cross-terms which are contained in the
TriLD solution space, but not in the PWLD solution space. As a result, TriLLD has an
advantage for this test problem. We will show that all methods produce a second-
order truncation error rate and very similar accuracy.

Finally, we will present PDT solutions to a selected set of the Kobayashi 3-D
Radiation Transport Benchmark problems[14]. We will also make some comments
about PDT computational performance on these and other problems.
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